skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Santana-Silva, L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We present a new constraint on the Hubble constant ($$H_0$$) from the standard dark siren method using a sample of five well-covered gravitational wave (GW) alerts reported during the first part of the fourth observing run of the Laser Interferometer Gravitational-Wave Observatory (LIGO), the Virgo and Kamioka Gravitational Wave Detector (KAGRA) collaborations (LVK) and with three updated standard dark sirens from third observation run in combination with the previous constraints from the first three runs. Our methodology relies on the galaxy catalogue method alone. We use a deep learning method to derive the full probability density estimation of photometric redshifts using the Legacy Survey catalogues. We add the constraints from well localized binary black hole mergers to the sample of standard dark sirens analysed in our previous work. We combine the $$H_0$$ posterior for 5 new standard sirens with other 10 previous events (using the most recent available data for the five novel events and updated three previous posteriors from O3), finding $$H_0 = 70.4^{+13.6}_{-11.7}~{\rm km~s^{-1}~Mpc^{-1}}$$ (68 per cent confidence interval) with the catalogue method only. This result represents an improvement of $$\sim 23~{{\ \rm per\ cent}}$$ comparing the new 15 dark siren constraints with the previous 10 dark siren constraints and a reduction in uncertainty of $$\sim 40~{{\ \rm per\ cent}}$$ from the combination of 15 dark and bright sirens compared with the GW170817 bright siren alone. The combination of dark and bright siren GW170817 with recent jet constraints yields $$H_0$$ of $$68.0^{+4.4}_{-3.8}~{\rm km~s^{-1}~Mpc^{-1}}$$, a $$\sim 6~{{\ \rm per\ cent}}$$ precision from standard sirens, reducing the previous constraint uncertainty by $$\sim 10~{{\ \rm per\ cent}}$$. 
    more » « less
  2. We present the photometric redshift characterization and calibration for the Dark Energy Camera All Data Everywhere (DECADE) weak lensing dataset: a catalog of 107 million galaxies observed by the Dark Energy Camera (DECam) in the northern Galactic cap. The redshifts are estimated from a combination of wide-field photometry, deep-field photometry with associated redshift estimates, and a transfer function between the wide field and deep field that is estimated using a source injection catalog. We construct four tomographic bins for the galaxy catalog, and estimate the redshift distribution, n ( z ) , within each one using the Self-organizing Map Photo-Z (SOMPZ) methodology. Our estimates include the contributions from sample variance, zeropoint calibration uncertainties, and redshift biases, as quantified for the deep-field dataset. The total uncertainties on the mean redshifts are σ z 0.01 . The SOMPZ estimates are then compared to those from the clustering redshift method, obtained by cross-correlating our source galaxies with galaxies in spectroscopic surveys, and are shown to be consistent with each other. 
    more » « less
    Free, publicly-accessible full text available October 22, 2026
  3. We present the pipeline for the cosmic shear analysis of the Dark Energy Camera All Data Everywhere (DECADE) weak lensing dataset: a catalog consisting of 107 million galaxies observed by the Dark Energy Camera (DECam) in the northern Galactic cap. The catalog derives from a large number of disparate observing programs and is therefore more inhomogeneous across the sky compared to existing lensing surveys. First, we use simulated data-vectors to show the sensitivity of our constraints to different analysis choices in our inference pipeline, including sensitivity to residual systematics. Next we use simulations to validate our covariance modeling for inhomogeneous datasets. Finally, we show that our choices in the end-to-end cosmic shear pipeline are robust against inhomogeneities in the survey, by extracting relative shifts in the cosmology constraints across different subsets of the footprint/catalog and showing they are all consistent within 1 σ to 2 σ . This is done for forty-six subsets of the data and is carried out in a fully consistent manner: for each subset of the data, we re-derive the photometric redshift estimates, shear calibrations, survey transfer functions, the data vector, measurement covariance, and finally, the cosmological constraints. Our results show that existing analysis methods for weak lensing cosmology can be fairly resilient towards inhomogeneous datasets. This also motivates exploring a wider range of image data for pursuing such cosmological constraints. 
    more » « less
    Free, publicly-accessible full text available October 22, 2026
  4. We present the Dark Energy Camera All Data Everywhere (DECADE) weak lensing dataset: a catalog of 107 million galaxies observed by the Dark Energy Camera (DECam) in the northern Galactic cap. This catalog was assembled from public DECam data including survey and standard observing programs. These data were consistently processed with the Dark Energy Survey Data Management pipeline as part of the DECADE campaign and serve as the basis of the DECam Local Volume Exploration survey (DELVE) Early Data Release 3 (EDR3). We apply the Metacalibration measurement algorithm to generate and calibrate galaxy shapes. After cuts, the resulting cosmology-ready galaxy shape catalog covers a region of 5,412 deg2 with an effective number density of 4.59 arcmin−2. The coadd images used to derive this data have a median limiting magnitude of r=23.6, i=23.2, and z=22.6, estimated at S/N=10 in a 2 arcsecond aperture. We present a suite of detailed studies to characterize the catalog, measure any residual systematic biases, and verify that the catalog is suitable for cosmology analyses. In parallel, we build an image simulation pipeline to characterize the remaining multiplicative shear bias in this catalog, which we measure to be m=(−2.454±0.124)×10−2 for the full sample. Despite the significantly inhomogeneous nature of the data set, due to it being an amalgamation of various observing programs, we find the resulting catalog has sufficient quality to yield competitive cosmological constraints. 
    more » « less
    Free, publicly-accessible full text available October 22, 2026
  5. We present cosmological constraints from the Dark Energy Camera All Data Everywhere (DECADE) cosmic shear analysis. This work uses shape measurements for 107 million galaxies measured through Dark Energy Camera (DECam) imaging of 5 , 412 deg 2 of sky that is outside the Dark Energy Survey (DES) footprint. We derive constraints on the cosmological parameters S 8 = 0.791 0.032 + 0.027 and for the Λ CDM model, which are consistent with those from other weak lensing surveys and from the cosmic microwave background. We combine our results with cosmic shear results from DES Y3 at the likelihood level, since the two datasets span independent areas on the sky. The combined measurements, which cover 10 , 000 deg 2 , prefer S 8 = 0.791 ± 0.023 and under the Λ CDM model. These results are the culmination of a series of rigorous studies that characterize and validate the DECADE dataset and the associated analysis methodologies (Anbajagane et. al 2025a,b,c). Overall, the DECADE project demonstrates that the cosmic shear analysis methods employed in Stage-III weak lensing surveys can provide robust cosmological constraints for fairly inhomogeneous datasets. This opens the possibility of using data that have been previously categorized as ``unusable’’ for cosmic shear analyses, thereby increasing the statistical power of upcoming weak lensing surveys. 
    more » « less
    Free, publicly-accessible full text available October 22, 2026
  6. Abstract We present the discovery of Aquarius III, an ultra-faint Milky Way satellite galaxy identified in the second data release of the DECam Local Volume Exploration survey. Based on deeper follow-up imaging with DECam, we find that Aquarius III is a low-luminosity ( M V = 2.5 0.5 + 0.3 ; L V = 850 260 + 380 L ), extended ( r 1 / 2 = 41 8 + 9 pc) stellar system located in the outer halo (D= 85 ± 4 kpc). From medium-resolution Keck/DEIMOS spectroscopy, we identify 11 member stars and measure a mean heliocentric radial velocity of v sys = 13.1 0.9 + 1.0 km s 1 for the system and place an upper limit ofσv< 3.5 km s−1v< 1.6 km s−1) on its velocity dispersion at the 95% (68%) credible level. Based on calcium-triplet metallicities of the six brightest red giant members, we find that Aquarius III is very metal-poor ([Fe/H]= − 2.61 ± 0.21) with a statistically significant metallicity spread ( σ [ Fe / H ] = 0.46 0.14 + 0.26 dex). We interpret this metallicity spread as strong evidence that the system is a dwarf galaxy as opposed to a star cluster. Combining our velocity measurement with Gaia proper motions, we find that Aquarius III is currently situated near its orbital pericenter in the outer halo (rperi= 78 ± 7 kpc) and that it is plausibly on first infall onto the Milky Way. This orbital history likely precludes significant tidal disruption from the Galactic disk, notably unlike other satellites with comparably low velocity dispersion limits in the literature. Thus, if further velocity measurements confirm that its velocity dispersion is truly belowσv≲ 2 km s−1, Aquarius III may serve as a useful laboratory for probing galaxy formation physics in low-mass halos. 
    more » « less
  7. ABSTRACT The current and next observation seasons will detect hundreds of gravitational waves (GWs) from compact binary systems coalescence at cosmological distances. When combined with independent electromagnetic measurements, the source redshift will be known, and we will be able to obtain precise measurements of the Hubble constant H0 via the distance–redshift relation. However, most observed mergers are not expected to have electromagnetic counterparts, which prevents a direct redshift measurement. In this scenario, one possibility is to use the dark sirens method that statistically marginalizes over all the potential host galaxies within the GW location volume to provide a probabilistic source redshift. Here we presented H0 measurements using two new dark sirens compared to previous analyses using DECam data: GW190924$$\_$$021846 and GW200202$$\_$$154313. The photometric redshifts of the possible host galaxies of these two events are acquired from the DECam Local Volume Exploration Survey (DELVE) carried out on the Blanco telescope at Cerro Tololo. The combination of the H0 posterior from GW190924$$\_$$021846 and GW200202$$\_$$154313 together with the bright siren GW170817 leads to $$H_{0} = 68.84^{+15.51}_{-7.74}\, \rm {km\, s^{-1}\, Mpc^{-1}}$$. Including these two dark sirens improves the 68  per cent confidence interval (CI) by 7  per cent over GW170817 alone. This demonstrates that the addition of well-localized dark sirens in such analysis improves the precision of cosmological measurements. Using a sample containing 10 well-localized dark sirens observed during the third LIGO/Virgo observation run, without the inclusion of GW170817, we determine a measurement of $$H_{0} = 76.00^{+17.64}_{-13.45}\, \rm {km\, s^{-1}\, Mpc^{-1}}$$. 
    more » « less
  8. null (Ed.)
  9. null (Ed.)
  10. null (Ed.)